経
 営
 の 概
 況

平 成 25 年 4 月
 中部電力株式会社

目 次

I．経営効率化の状況
1．設備形成•運用の効率化 1
1－1．電源設備の設備形成•運用の効率化
$1-2$ ．流通設備の設備形成•運用の効率化
1－3．負荷率の向上
2．燃料調達の効率化 7
3．業務運営の効率化 9
3－1．人件費の効率化
3－2．諸経費の効率化
4．浜岡原子力発電所の運転停止以降の経営効率化 11
II．収支の状況と電気料金
1．過去5 カ年の収支概況 12
2．平成 25 年度の収支見通し 12
3．電気料金について 14

I．経営効率化の状況

1．設備形成•運用の効率化

弊社は，これまで効率的な設備形成を行うとともに，既存設備の効率的運用に努め，設備投資の削減による固定資産の圧縮を進めてきました。

近年は，経年劣化設備の更新や高効率コンバインドサイクル発電の導入，メガソーラー発電の推進などを行っています。投資にあたっては電力の安定供給に必要不可欠な案件に厳選するとともに，コストダウンを徹底し，設備投資額の抑制に努めています。

その結果，平成 24 年度の設備投資額は 3,001 億円となり，平成 12 年度に比べて約 36%低減し，平成 24 年度末の固定資産額は平成 12 年度に比べて約 30% 低減しています。
（億円）電気事業設備投資額の推移

電気事業固定資産額の推移

また，既存設備の経年劣化による修繕工事が増加するものの，点検•保全内容の見直し や工事の実施時期の繰り延べなどにより，修繕費の抑制に努めています。

その結果，平成 24 年度の販売電力量当たり修繕費は，平成 12 年度に比べて約 12% 低減 しています。

修繕費の推移

1－1．電源設備の設備形成•運用の効率化

－高効率コンバインドサイクル発電の導入
弊社では，高効率コンバインドサイクル発電を導入することにより，火力発電の熱効率向上を図り，燃料費の削減につなげてきました。

近年では，平成 24 年 7 月に上越火力発電所の $1-1$ 号（出力：59．5 万 kW ）を，平成 25年 1 月に $1-2$ 号（同：59．5万kW）を営業運転開始しています。

今後も，平成 25 年度から平成 26 年度にかけて上越火力発電所を着実に運転開始すると ともに，西名古屋火力発電所 7 号系列を早期に開発することにより，燃料費のさらなる削減を図っていきます。

上越火火発策所所		
出力	238 万 kW	
営業運転開始	$\begin{aligned} & 1-1 \text { 号 : 平成 } 24 \text { 年 } 7 \text { 月 } \\ & 1-2 \text { 号 : 平成 } 25 \text { 年 } 1 \text { 月 } \\ & 2-1 \text { 号 : 平成 } 25 \text { 年 } 7 \text { 月 (予定) } \\ & 2-2 \text { 号 : 平成 } 26 \text { 年 } 5 \text { 月 (予定) } \end{aligned}$	
熱効率	58\％以上（低位発熱量基準）	
LNG削減効果	60 万t／年	
CO_{2} 削減効果	160 万t／年	

（注）低位発熱量基準とは，高位発熱量から燃料中の水分および燃焼によって生成された水分の凝縮熱を差し引いた発熱量を基準にしたもの。

火力発電設備熱効率の推移（低位発熱量基準）

効率運用を通じた火力発電所の総合熱効率の向上

弊社は，前述の高効率コンバインドサイクル発電の導入に加え，発電プラントの高稼働運転や点検期間の短縮などによって，火力発電所の総合熱効率の向上に取り組んできまし た。

その結果，平成 24 年度の火力総合熱効率は 46.78%（低位発熱量基準）と，引き続き国内電力会社の中でトップレベルを維持しています。

また，平成 24 年度には，知多第二火力発電所 2 号ガスタービン（出力： 15.4 万 kW ）に ついて，より高効率な最新型に取り替える工事を実施し，LNG消費量を年間 1.5 万 t 削減しています。

火カ総合熱効率の推移（低位発熱量基準）

（出典）電力 10 社平均は「電気事業における環境行動計画」（電気事業連合会統計委員会）

1－2．流通設備の設備形成•運用の効率化

送配電損失率の低減

送変電設備においては，送電電圧の高電圧化や設備更新•新増設に際して，低損失型変電設備を採用しています。また，配電設備においては，低損失型のアモルファス変圧器の採用や，電力損失の最小化を目指した配電系統運用などを行っています。

その結果，平成 5 年度以降の送配電損失率について 5% 未満を維持するなど，国内電力会社の中でトップレベルとなっています。

送配電損失率の推移

（出典）電力 10 社平均は「電気事業便覧」（電気事業連合会統計委員会）

点検•保守方法の合理化

設備の分解を伴わない外部診断技術を活用した内部異常•劣化の予兆把握，過去の動作回数や運転状況，および設備の不具合情報の蓄積や劣化研究による経年劣化評価などを総合的に判断して，点検項目の厳選，点検周期の延伸などの合理化を行うとともに，新たな補修工法を開発し，修繕費の低減に努めています。

1－3．負荷率の向上

電力消費のピークは，一日のうち昼間の時間帯となることが一般的です。このピークの需要の夜間移行（ピークシフト）あるいは抑制（ピークカット）を促すことや，夜間に新 たな需要を創出（ボトムアップ）することで，電力設備の利用率を示す数値である負荷率 が向上し，効率的な設備運用につながります。

弊社は，昼間と夜間で料金単価に差をつけた料金メニューの設定や，省エネ・省 C O ${ }_{2}$ や コスト削減といったお客さまのニーズに合わせたエネルギー利用の提案，あるいは夜間に稼働する機器の普及拡大の活動を通して，負荷率の向上に努めています。その結果，一年間の負荷率（年負荷率）は，平成 12 年度以降概ね向上しています。

今後も，ピーク時における電力需要の制御（デマンドレスポンス）のための新たな契約 メニューの設定に向けて取り組むなど，お客さまのご要望にお応えしながら，経営効率化 にも資する施策を講じ，負荷率の向上に努めていきます。

一年間の負荷率（年負荷率）の推移

（注）年負荷率 $=$ 年平均電力［年間電力量 $/($ 年日数 $\times 24 \mathrm{~h})] \div$ 最大電力

厄ご利用いただける料金メニュー
＜低圧＞
Eライフプラン（ 3 時間帯別電灯）：全ての熱源を電気で賄うご家庭向け タイムプラン（時間帯別電灯）：夜型ライフスタイルのご家庭向け
＜高圧＞
業務用ウィークエンドプラン：土日•祝日に営業されている商店向け
高圧タイムプラン：夜間•日曜•祝日に操業されている工場向け

2．燃料調達の効率化

弊社の燃料調達価格は全日本通関統計と比較して，年度による多少のばらつきはありま すが，ほぼ同水準となっています。

こうした中，燃料調達における安定性，経済性，需給変動に迅速かつ適切に対応できる柔軟性のさらなる向上を図るため，生産•購入から発電に至る燃料サプライチェーンの強化を進めるとともに，調達の分散化•多様化を図るなど，さまざまな取り組みを行ってい ます。

石炭調達力の強化

弊社は，平成 22 年 4 月に，石炭全量の調達を中電エネルギートレーディング株に集約し ました。同社が売主・トレーダーとの調達交渉により日々入手する市場情報を活用するこ とで機動的な対応が可能となり，需給状況に応じた調達を行ってきました。

平成 24 年 4 月には，石炭調達力の一層の強化を目指し，アジアの石炭トレーディングの中心地であるシンガポールに設立した Chubu Energy Trading Singapore Pte．Ltd．にトレ ーディングの実施拠点を移転しました。市場情報が集中するシンガポールで調達を行うこ とで，石炭取引に関する情報収集力を高めるとともに，有能な人財の確保が可能になると期待しています。

\bigcirc 上流権益の取得

弊社は，L N G •石炭の上流権益の取得に取り組んでおり，これまで，豪州ゴーゴン・ プロジェクト（平成 21 年），インテグラ・プロジェクト（平成 23 年），加国コルドバ・プロ ジェクト（平成 23 年）に参画してきました。プロジェクトの参画により，燃料の安定的•経済的な調達に向けた燃料サプライチェーンの強化に取り組んでいます。

さらに，平成 24 年 9 月には，豪州において国際石油開発帝石株が推進するイクシス・プ ロジェクトに参画しました。本プロジェクトは，本邦企業がオペレータ（操業主体）とし て大型LNG開発を主導する初のプロジェクトであり，平成 28 年度生産開始に向け，弊社 も現地法人を通じて，積極的に関わっていきます。

上流権益の取得状況など

米国からのLNG調達

米国は，域内の在来型ガス田の枯渇 もあり，平成 20 年代後半にはLNG の純輸入国になるものと見込まれて いましたが，非在来型ガス田の開発に よる「シェールガス革命」により，L NGの輸出国に変貌すると予想され ています。こうした状況の中で平成 23年頃から，輸入用として建設されたL N G 基地を輸出用の基地に転換する動きが出てきました。

フリーポート基地全景

こうした状況を踏まえ，弊社は，平成 24 年 7 月に大阪ガス森とともに米国フリーポート社の子会社と天然ガス液化加工契約を締結しました。この契約により，パイプラインを通 じ自社で調達した天然ガスを液化し，L N Gとして輸入することが可能となります。

シェールガスの生産拡大などにより，LNGの一大生産地となる米国を調達先として新 たに加えることで，弊社の燃料調達の安定性が向上します。また，自らが L N G 生産者と なることから，L N G の引渡場所を自由に決めることが可能となり，需給に応じた調整が容易になるため，燃料調達の柔軟性も高まります。さらには，米国ガス価格連動のLNG を，長期に亘って，確実に日本に持ち込むことで，価格体系の多様化が進み，経済的な燃料調達が可能となることが見込まれています。

韓国ガス公社とのLNG共同購入

平成 24 年 12 月に，韓国ガス公社（KOGAS）とともに，イタリア炭化水素公社から のLNG共同購入に関する基本合意書を締結しました。この契約は，平成 25 年 5 月～平成 29 年 12 月までの約 5 年間に合計 28 隻分（約 170 万 t）のLNGを弊社とK O G A S が共同で購入するもので，国際間の買主同士によるLNGの共同購入はアジアで初めてです。

この契約により購入するLNGは，弊社とK O G A S の両社間で融通し合うことができ るため，2国間のLNG需給状況の違いを利用した引取数量•時期の調整が可能となり，弊社の調達の安定性および柔軟性の向上につながるものと考えています。

3．業務運営の効率化

3－1．人件費の効率化

弊社は，電力自由化に対応するため，電力業界の中でもいち早く要員のスリム化に取り組むなど，これまでも聖域を設けない業務効率化を継続的に推進してきました。

こうした取り組みの結果，弊社の従業員数は，平成 12 年度から約 8% 減少し，平成 24年度末には社員実数は 17,345 名となりました。生産性を表す「従業員 1 人当たり販売電力量」は，平成 24 年度には 730 万 kWh ／人となり，国内電力会社の中で上位を維持していま す。

現在も，業務運営のさらなる効率化と強固な事業基盤の確立のため，「業務再構築プラ ン」を策定し，業務のゼロベースでの見直しとその簡素化•廃止を図るとともに，効率化 の成果を機能強化が必要な分野に振り向ける取り組みを進めています。

従業員数の推移

（人）

従業員1人当たり販売電力量の推移

（出典）電力 10 社平均は「電気事業便覧」（電気事業連合会統計委員会）

こうした取り組みの結果，平成 24 年度の販売電力量あたり人件費は，平成 12 年度に比 べて約 28% 低減しています。

今後とも業務運営における効率化に積極的に取り組み，高い労働生産性の維持に努めて いきます。

人件費の推移

3－2．諸経費の効率化

弊社は，電力自由化に対応するため，これまでも聖域を設けない業務効率化を継続的に推進してきました。

その結果，平成 24 年度の販売電力量当たり諸経費は，平成 12 年度に比べて約 14% 低減 しています。

諸経費の推移

（注）諸経費：廃棄物処理費，消耗品費，賃借料，委託費，損害保険料，普及開発関係費，養成費，研究費，諸費（ CO_{2} 排出クレジット償却費除き）

4．浜岡原子力発電所の運転停止以降の経営効率化

弊社費用の推移

設備投資の厳選や徹底した業務効率化への取り組みにより，弊社の一般経費や設備関係費などの費用は電力自由化が開始された平成 12 年度以降で 2 割程度減少しています。

一方，平成 23 年 5 月の浜岡原子力発電所全号機の運転停止により，燃料費が大幅に増大 し，経営を圧迫する状況となっています。

浜岡原子力発電所の運転停止以降の経営効率化

弊社は，平成 23 年 5 月に内閣総理大臣からの要請を受け，津波へのさらなる対策が完了 するまでの間，浜岡原子力発電所全号機の運転を停止することとしました。これに伴い，燃料費の増加など多大な追加費用負担が発生するため，弊社は平成 23 年度に引き続き，最大限の経営効率化に取り組むこととし，平成 24 年度は，投資の削減として 600 億円程度，費用の削減として 400 億円程度，合わせて約 1， 000 億円の緊急的なコストダウンを実施し ました。

具体的な効率化の内容としては，電力の安定供給や公衆保安を確保したうえで，工事の実施時期•範囲•工法等を見直し，設備投資および修繕費を削減しました。また，経済的 な燃料調達および運用により燃料費を削減するとともに，広報•販売活動や研究開発・シ ステム開発等の内容•規模を見直すことなどにより，諸経費を削減しました。

II．収支の状況と電気料金

1．過去5 カ年の収支概況

販売電力量については，平成 20 年度•21年度は世界的な景気悪化等の影響を受け減少し ました。平成 22 年度は，海外経済の改善や政府の経済対策の効果等を背景とした輸出や生産の持ち直しなどから，販売電力量は増加しました。平成 23 年度は，空調設備の稼動減や節電などから，前年を下回りました。平成 24 年度は，節電が定着したことや，年度後半に かけての生産の減少などにより前年をさらに下回りました。

売上高については，販売電力量の増加や燃料費調整額の増加により平成 20 年度は増加し ましたが，平成 21 年度は販売電力量の減少等の影響により減少しました。平成 22 年度は，燃料費調整額の減少はありましたが，販売電力量の増加等の影響により売上高は増加しま した。平成 23 年度は，販売電力量の減少はありましたが，燃料費調整額の増加により売上高は増加しました。平成 24 年度は，燃料費調整額の増加に加え，他の電力会社へ応援融通 を実施したことなどにより増加しました。

収支の状況については，平成 20 年度は，燃料価格が急騰した影響等により利益水準が低下しました。平成 21 年度は，販売電力量の減少等により厳しい経営環境にありましたが，燃料価格が下落した影響等により収支が好転しました。平成 22 年度は，売上高は増加した ものの，燃料価格の上昇などにより収支は悪化しました。平成 23 年度は，売上高の増加は ありましたが，浜岡原子力発電所全号機の運転を停止したことにより燃料費が大幅に増加 したことなどから収支は悪化し，774億円の経常損失となりました。平成 24 年度も引き続 き浜岡原子力発電所の停止が継続しており，燃料費の大幅な増加などにより， 521 億円の経常損失と 2 期連続の赤字となりました。

2．平成 25 年度の収支見通し

売上高は，販売電力量の減少はあるものの，燃料費調整額の増加などによる電灯電力料 の増加などから，2兆5，500億円程度と増収を見込んでいます。

営業損益，経常損益および当期純損益は，販売電力量の減少や円安進行による燃料費の増加などにより，営業損失は 1，000 億円，経常損失は 1，300 億円，当期純損失は 900 億円 と，引き続き厳しい収支状況となることを見込んでいます。

最近5力年の収支の推移

（単位：億円，\％）

項 目		20 年度	21年度	22 年度	23 年度	24 年度
販売電力量（億 kWh）		1，297	1，228	1，309	1，279	1，266
経	電灯電力料	22，542	20，115	20，931	21，616	22，544
	その他収益	1， 090	939	1， 012	1，533	2， 512
	（対前年増加率） ［売上高］	$\begin{array}{r} (5.1) \\ {[23,351]} \end{array}$	$\begin{aligned} & (\triangle 10.7) \\ & {[20,843]} \end{aligned}$	$\begin{array}{r} (4.5) \\ {[21,782]} \end{array}$	$\begin{array}{r} (5.4) \\ {[22,951]} \end{array}$	$\begin{array}{r} (8.3) \\ {[24,856]} \end{array}$
	計	23，633	21，054	21，944	23，149	25， 057
	人 件 費	1，889	2， 403	2， 285	2， 013	1，825
	燃 料 費	8，627	5，589	6， 784	10， 409	11，948
	修 繕 費	1，841	2，124	2， 026	2， 160	2， 200
経 常	減価償却費	2， 997	2，806	2， 662	2，716	2，602
費	支 払 利 息	772	384	362	360	408
	公 租 公 課	1，308	1，259	1，277	1，255	1，262
	その他費用	5，182	4，913	5，234	5， 008	5，331
	計	22，620	19， 480	20，633	23， 924	25，579
	常 損 益	1，013	1，574	1，310	$\triangle 774$	$\triangle 521$
渴 水 準 備 金		－	37	24	83	$\triangle 38$
特 別 利 益		－	89	－	90	74
特 別 損 失		1，536	－	86	172	－
税引前当期純損益		$\triangle 523$	1，626	1，199	$\triangle 940$	$\triangle 409$
法 人 税 等		187	675	616	－	3
法人税等調整額		$\triangle 344$	$\triangle 113$	$\triangle 175$	5	$\triangle 59$
当 期 純 損 益		$\triangle 366$	1， 064	758	$\triangle 946$	$\triangle 353$

※ 億円未満切り捨て

3．電気料金について

弊社は，平成 12 年の電力小売部分自由化以降， 5 回にわたって電気料金の引き下げを実施し，経営効率化の成果をお客さまへ還元してきました。

電気料金の改定状況（規制部門における平均改定率）

	平成 12 年 10 月	平成 14 年 9 月	平成 17 年 1 月	平成 18 年 4 月	平成 20 年 4 月
平均改定率	$\triangle 5.78$	$\triangle 6.18$	$\triangle 5.94$	$\triangle 3.79$	$\triangle 0.80$

弊社は，平成 23 年 5 月に内閣総理大臣からの要請を受け，浜岡原子力発電所全号機の運転を停止したことにより，燃料費が大幅に増加しました。これに対し，平成 23 年度に引き続き，平成 24 年度については，投資と費用について合わせて 1,000 億円の経営効率化に取 り組みましたが，平成 24 年度決算は， 353 億円の当期純損失と 2 期連続の赤字となり，利益剰余金は 769 億円減少しました。

平成 25 年度についても，浜岡原子力発電所の停止が継続しており，燃料費の大幅な増加 などから 3 期連続の赤字決算になると見込まれます。そのため新たに「経営効率化緊急対策本部」を設置し，これまでの経営効率化をさらに加速•徹底し，「聖域なきコストダウ ン」に取り組むこととしました。

料金改定については，まずは設備形成•運用，調達，業務運営などあらゆる分野におけ る効率化への取り組みを徹底し，その上でこうした効率化の進捗状況や燃料価格などをふ まえた収支状況を総合的に勘案して判断していくものであると考えています。

配当および財務状況

	20 年度	21 年度	22 年度	23 年度	24 年度
配当額（億円）※1	467	461	456	454	$189 \% 2$
1 株当たり配当額（円）	60	60	60	60	$25 \% 2$
利益剰余金残高（億円）	9,282	9,526	9,719	8,318	7,548
自己資本比率（\％）	28.4	29.6	29.5	25.0	22.8

※ 1：各決算期の剰余金配当額。
※2：24年度に関しては，中間配当の値。
（参考）平成 25 年度供給計画に基づく主な電源設備計画

電源設備計画

件名	最大出力	運転開始年度
上越火力発電所 2号系列	119 万 kW	平成 25,26 年度
西名古屋火力発電所 7 号系列	231.6 万 kW	平成 29 年度
メガソーラーしみず	$8,000 \mathrm{~kW}$	平成 26 年度
徳山水力発電所 1 号機	13.1 万 kW	平成 27 年度
徳山水力発電所 2 号機	2.24 万 kW	平成 26 年度
三重県水力発電所 10 地点（取得）	9.8 万 kW	平成 $25 ~ 27$ 年度
阿多岐水力発電所	190 kW	平成 27 年度
水力発電所 2 地点	510 kW	平成 27 年度
丹生川水力発電所	350 kW	平成 28 年度
水力発電所 1 地点	320 kW	平成 30 年度
水力発電所 1 地点	$5,000 \mathrm{~kW}$	平成 32 年度
水力発電所 1 地点	$7,300 \mathrm{~kW}$	平成 34 年度

（注）運転開始時期が未定の設備については記載しておりません。
（参考）平成 25 年度供給計画に基づく主な流通設備計画

流通設備計画

	件名	規模（注）	使用開始年度
送	275 kV 駿河東清水線	16 km	平成 25 年度 （24年度一部使用）
設	275 kV 海部名城線 牛島町（変）π 引込	0.1 km	平成 28 年度
備	500 kV 東京中部間連系変換所分岐線（仮称）	未定	平成 32 年度
変 電 設 備	275 kV 東清水変電所	50 万 kVA	平成 25 年度
	牛島町変電所 $275 / 77 \mathrm{kV}$ 変圧器設置	60 万 kVA	平成 28 年度
	牛島町変電所 変圧器昇圧 （ $154 / 33 \rightarrow 275 / 33 \mathrm{kV}$ ）	－	平成 29 年度
	275 kV 川根変電所 変圧器取替	$40 \rightarrow 60$ 万 kVA	平成 29 年度
	275 kV 西名古屋変電所 増設	45 万 kVA	平成 30 年度
	東京中部間連系変換所（仮称）	90 万 kW	平成 32 年度

（注）使用開始時期が未定の設備については記載しておりません。
（注）送電設備は亘長，変電設備は増加出力を示します。

時代の先へ。ひとりのそばへ。

中部電力

〒461－8680 名古屋市東区東新町1番地 TEL 052－951－8211（代）
www．chuden．co．jp

