配管振動抑制自動提案システムの実用化
 Practical application of an Automatic Piping Vibration Control Proposal System配管振動を抑えられる固定サポート位置の自動提案

火力発電所等の小口径配管振動に対して，問題のある振動かどうか短時間に判別し，問題があれば振動を抑え られる固定サポート位置を早期かつ安価に自動提案でき る手法（システム）を開発した。実機の配管振動不具合 に対し適用を進め，実機検証データを蓄積するとともに システム內の振動評価パラメータを調整し最適化を図 り，本システムを実用化することができた。

1

背景および目的

近年，出力変化の大きい再生可能エネルギーが急激 に増加し，需給バランスを調整するため，火力発電設備の起動停止回数が増加している。起動停止過程で は，配管の内部流体の変動が大きいため，振動が増加 する。従来の運用方法でユニット寿命まで耐えられ た振動も起動停止回数が増えることにより配管に不具合が発生し，電力安定供給の支障となることが懸念さ れる。

従来，配管振動がユニット運用上問題ある振動レベ ルにあるかかどうかの判断が容易ではなかった。ま た，配管振動を抑制するためには，適切な位置へ固定 サポートを追設する必要があるが，その位置の特定に は，専門技術者による振動測定および高度な解析を行 う必要があり，大幅な時間と費用を要していた。

そこで，配管振動トラブルを撲滅するため，問題の ある振動かどうかを短時間に判別し，振動問題発生時 に，振動を抑えられる固定サポートの位置を早期か つ安価に自動提案できるシステム（第 1 図）を開発し た。（技術開発ニュースNo． 164 2021／2参照）

第1図 配管振動抑制自動提案システム

2 固定サポート位置自動提案システムの概要

過去の配管不具合実績を調査し，対象範囲を小口径配管の共振振動に絞り込んだ。共振振動は，配管側に固定

執筆者

電力技術研究所
材料化学グループ
佐滕 克良

サポートを追設し，固有振動数をずらすことで解消（第 2図）される。

第2図 共振解消方法の考え方

第3図 測定箇所選定

操作者が入力した配管情報（長さ，形状）をもと に，システムが振動測定箇所（測定点）を提案（第 3 図）し，測定結果をSWRI＊配管振動評価基準およ びISO20816－8小 \square 径接続管振動基準の評価線図に照らし，振動しベルを判別する設計とした。 （※Southwest Research Institute：米国の研究機関）

適切な固定サポート位置の提案は，振幅の大きさだけ でなく，損傷リスクを考慮かつ，固定後の共振有無をシ ミュレートし決定される。第4図に振動問題形態ごとに最適化した解決手順を示す。

3検証

模擬配管で共振振動を再現したモックアップ試験（第 5図）を行い，専門技術者とシステムが導き出した固定 サポート位置が一致し，振動を抑制できることを確認 した。

次に実機適用例の紹介として，これまで実施した火力発電所の現場課題解決 8 件のうちの一例を示す。

第6図に示す配管が振動で破断した実例に対し，本シ ステムで解析（第7図）し，追加サポートの提案を実施 した。対策後（第 8 図），振動しベルは約 4 分の 1 に低減（第9図）し，破断部の応力を低下させられ，かつ，共振を回避できる位置を提案できた。対策後，2年以上配管破断は再発していない。

以上のモックアップ試験および実機測定データを用い て，システムの振動評価パラメータ（サポート剛性によ る周波数変化係数）をチューニングした。これにより，事前のシミュレーションによってどの程度の剛性のサポート を追加する必要があるのか予測できるとともに，サポー ト追加対策後の振動状態を精度よく予測し，効果的に振動低減できるサポート位置を提案できるようになった。

第6図 実機での検証例（対策前）

第7図 配管振動シミュレーション

第8図 実機での検証例（対策後）

第9図 対策前後の変位

研究成果
実機の課題解決事例を積み重ね，固定サポート追加時の振動変化を精度良く予測できるようになった。

これにより，配管振動に対して，問題のある振動か どうか短時間に判別し，問題があれば振動を抑えられ る固定サポート位置を早期かつ安価に自動提案できる手法（システム）を確立できた。

5 今後の展開

高温環境下など適用範囲拡大を目指し，現場と協働 し「かいぜん活動」を実施（第10図）している。今後も社内外の工場，プラントの配管振動の課題解決に取り組み，社会実装できる範囲をより一層広めていき たい。

第10図（株）JERA とのかいぜん活動の様子

