大気電気学のススメ

岐阜大学 工学部 電気電子工学科 教授 高木 伸之

Professor Nobuyuki Takagi Department of Electrical and Electronic Engineering, Faculty of Engineering, Gifu University

はじめに

「大気電気 | という言葉をご存じだろうか。「大気 | と 「電気」は誰もが知っているが「大気電気」はあまりなじ みのない方が大半なのではないだろうか。当初は文字 通り大気中の電気現象を研究の守備範囲としていたが、 現在では地球内部や大気圏外の磁気圏も含めた地球周 辺での電磁気環境を取り扱っている。研究分野は大き く分けて3つ、雷・大気イオン・大気雑音である。近年の ホットな研究活動としては「低周波電磁波による地球温 暖化のモニタリング」、「雷雲上部から電離層への放電 現象 |、「電磁波による地震予知 | 「落雷の予知 | 等があ る。火の玉(ball lightning)も研究テーマの一つである。 大気電気学は地球環境(大気的、電磁的)の基礎的解明 を通してよりよい人間社会へと貢献することを目指し ている(1)-(3)。以下ではクイズを通して大気電気学を紹 介する。

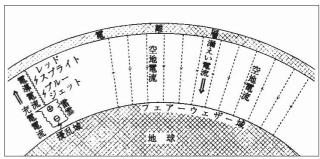
大気電気クイズ その(1)

雷が電気現象であることを最初に発見したのは 誰か?

- A. フランクリン (アメリカ人)
- B. ダリバール (フランス人)
- C. 橋本曇斎(日本人)
- D. リッチマン (ロシア人)

凧揚げ実験で有名なフラン クリンよりも約1ヶ月早くダ リバールは1752年雷が電気 現象であることを証明する実 験に成功していた。大地と絶 縁された導体棒を設置し、接 地線と導体棒間で火花が飛ぶ ことを雷雲下で観測している (第1図)。ただし、ダリバール はフランクリンの「雷光と電 気火花との類似性」という仮 説(1749年)(4)を知った上で

第1図 ダリバールの実験(2)


実験を行っているので、実質的な第一発見者はフラン クリンであると言える。Dのリッチマンは同様の実験を して死亡している。ご注意を。

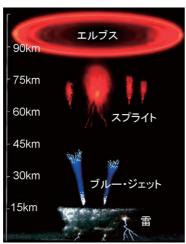
大気電気クイズ その(2)

晴天時に屋外で地上1mと2m間の電位差を測定 した。その値はおよそ何ボルトか?

0V В. C. 100V D. 10000V

地上約100km付近から上では紫外線等の電離作用に より電子密度が急激に増加する。この領域は電離層と呼 ばれている。電離層も大地も導電性は高く、第2図に示 すように電離層下面と大地表面間は一種のコンデンサ と見なすことができる。このコンデンサは雷雲により絶 えず充電されており、コンデンサ内で電界が発生する。 晴天時に地上付近では100V/m程度であるが上空に行 くほど低下する。またコンデンサー内の媒質すなわち大 気の抵抗率は無限大ではないために10⁻¹²A/m²程度の 電流が流れている。雷雲による充電がなければ7分程度 で電流は流れなくなる。この電流機構を電気回路に見立 ててグローバルサーキット(第2図)と呼んでいる。

第2図 グローバルサーキット(1)


大気電気クイズ その(3)

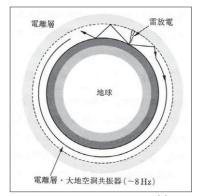
次の高層大気中の発光現象の内、雷雲が原因と なって発生するものはどれか?

- A. オーロラ
- B. 流れ星
- C. スプライト
- D. 夜光雲

1989年高感度カメラによって偶然撮影された高層大 気中の発光現象は多くの科学者をその虜にした。スプ ライトと命名されたこの発光現象は高度60kmから

90kmにかけて発生 し、赤く光り、雷放電 が先行していること がわかった。他にも ブルージェット(高度 20kmから40kmに かけて発生し青色に 発光) や エルブス(高 度90km付近でドー ナツ状に発光)とい った発光現象もある ことがわかっている (第3図)。

第3図 電離層への放電現象


大気電気クイズ その(4)

地球が温暖化すると雷放電の数はどうなるか?

- A. 増える
- B. 減る
- C. 当初は増えるがその後減少する
- D. 無関係

低周波数領域では電離層と大地は完全導体と見なす ことができ電磁波は減衰することなく地球を一周伝搬 し、空洞共振現象が生じる。この現象はシューマン共振 と呼ばれ、共振周波数は約8Hzである(第4図)。この電 磁波の発生源は世界中で毎秒約100個程度発生する雷

放電である。雷の多 い熱帯地方での温度 が1℃上昇するとシ ューマン共振強度が 2倍増加することが 報告されている。す なわち雷で気候変動 をモニタリングする ことが可能だという ことである。

第4図 シューマン共振(1)

大気電気クイズ その(5)

大気中の浮遊微粒子エーロゾル(大きさは0.1~ 10μm。密度は約107個/m3。)の働きはどれか?

- A. 健康被害をもたらす
- B. 雨滴の種になる
- C. 気候を冷却化する
- D. 気候を温暖化する

エーロゾルは海水起源(NaCl)、燃焼生成物、土壌粒子 等が発生源である。ディーゼル自動車から排出される微 粒子は社会問題化した。水蒸気が凝結して雲粒になるに は核となるものが必要でこの役割をするのがエーロゾ ルである。また、エーロゾルは日射を反射・吸収・透過す るので気候変動に大きな影響を与える。温暖化効果も冷 却化効果もあるがトータルでは冷却化効果の方が高い。

大気電気クイズ その(6)

雷からの避難場所として誤っているものは?

- A. ビルの横
- B. 配電線·送電線の下
- C. 車の中
- D. 木の下

落雷は雷雲内からの放電によって開始され、放電は 地上に向かって進展している。従って高いものほど避

雷しやすくなり、A~ Dいずれも人間以外の 場所にまず落ちる。し かし、木は導電性が悪 いために電流が流れる と幹や枝は高電位とな り木の下のゼロ電位の 人間との間で放電す る。これを側撃雷(第5 図)といい、木の下に避 難した大勢の人が亡く なっている⁽⁵⁾。

第5図 側撃雷

おわりに

全てを紹介できなかったが、少しでも興味を持って いただけたら幸いである。

「綾老文献〕

- (1)大気電気学会編:大気電気学概論、コロナ社(2003)
- (2)北川信一郎編著:大気電気学、東海大学出版会(1996)
- (3)日本大気電気学会ホームページ:
 - http://www1a.comm.eng.osaka-u.ac.jp/~saej/
- (4) 宮地巌: 雷を電気と認めた時代と科学者の回想、電気学会誌、 121-5, p326-329(2001)
- (5)大気電気学会編:雷から身を守るには、日本大気電気学会(2001)

高木伸之(たかぎのぶゆき)氏 略歴

昭和60年3月 名古屋大学大学院博士後期課程満了

昭和60年4月 岐阜大学工学部助手

平成 2年4月 岐阜大学工学部助教授

平成19年3月 岐阜大学工学部教授

平成19年6月~21年5月 日本大気電気学会会長