えびせんべい膨化焼成生地の乾燥手法の開発

マイクロ波と熱風を組み合わせたコストパフォーマンス高い乾燥システムを提案

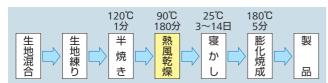
Development of a Drying Method for Puffed and Baked Shrimp Chip Dough

Suggestion for a Cost-Effective Combined Microwave-Hot Air Drying System

(エネルギー応用研究所 都市・産業技術G 産業エネルギーT)

「二度焼きえびせんべい」の生地は膨化焼成前に所 定の水分率まで乾燥を行っている。従来、乾燥はボイ ラ熱源による熱風乾燥で行われているが、これにマイ クロ波・熱風併用乾燥技術を導入することで大幅な省 エネ、乾燥コスト低減を図る技術を開発した。

(Industrial Energy Team, Urban and Industrial Technology Group, **Energy Applications Research and Development Center)**


Dough for "twice-baked shrimp crackers" dries up to a specified moisture content before the puffing and drying processes. Traditionally, drying is performed by means of hot-air drying using a boiler as a heat source. A technology aiming at the reduction of drying costs has been developed by introducing a combined microwave-hot air drying system to this traditional method.

開発の背景・目的

えびせんべいは、えびすり身と澱粉の混合物を熱した 鉄板で挟んで焼成(焼きあげる)ものであるが、硬めに焼 き上げた高級えびせんべいは、最初にハンペン状になる 程度まで焼成(半焼き)を行い、それを乾燥した後に、再 度焼成(膨化焼成)を行って作るため「二度焼きえびせん べい」と呼ばれる。

二度焼きえびせんべいの製造工程を第1図に示す。

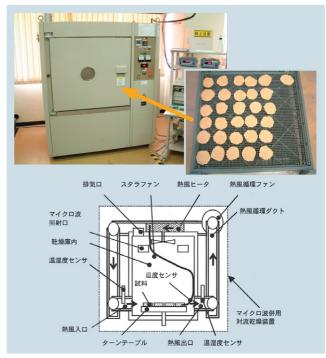
第1図 二度焼きえびせんべいの製造工程

半焼きした水分率50%のハンペ ン状生地を、熱風乾燥で水分率11 ~18%の堅い生地(外観を第2図 に示す。)とし、生地内部の水分率 が均一となるよう数日間寝かした 後、生地を再度焼成して膨らませ 第2図 二度焼きえび (膨化焼成)て製品としている。

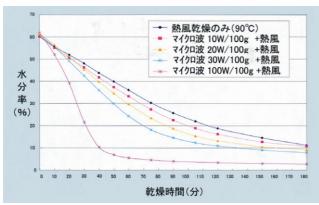
せんべい生地(乾燥後)

熱風乾燥工程における熱源としてはガス・石油が用い られている。熱風乾燥機は内部を生地を乗せたコンベア (棚)がゆっくりと移動する構造となっているが、乾燥時 間が約180分程度と長いため乾燥機が大型となり、設備 導入コストが高く、広い設置スペースが必要であった。

本研究では、熱風乾燥とマイクロ波乾燥を組み合わせ たコストパフォーマンスの高い生地の乾燥手法につい て検討し、生地の乾燥試験を行って適切な処理条件を見 出すとともに、乾燥時間、エネルギー消費、コストにつ いて評価した。


研究の概要・結果

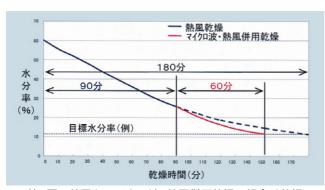
マイクロ波乾燥は、周波数2.45GHzのマイクロ波を 被乾燥物に照射し、内部の誘電体分子(主として水分子) を振動・発熱させて乾燥する技術である。被乾燥物の内 部に直接エネルギーを伝えるため、急速な加熱が可能で 乾燥時間を短縮でき、乾燥機も比較的小型化できるが、 反面、水分率の高い領域では局部加熱による乾燥ムラ、 変形が生じる可能性があり、コストも比較的高い。


このため、熱風とマイクロ波乾燥を併用することで、 乾燥時間、乾燥品質、消費エネルギー、コストの最適化 を図る技術について検討を行うこととし、熱風、マイク 口波による生地の乾燥試験を行った。

乾燥試験装置として、当社保有のマイクロ波・熱風併 用乾燥機(第3図)を使用し、熱風単独およびマイクロ波・ 熱風併用におけるえびせんべい生地の水分率変化を計 測した。

この結果を第4図に示すが、マイクロ波・熱風併用乾 燥では熱風単独乾燥より水分率減少速度(乾燥速度)が 早くなるが、水分率が10%以下となる領域では水分減 少速度が低下する。また、マイクロ波出力を高くし過ぎ た場合、生地に変形・気泡が生じた。

第3図 マイクロ波・熱風併用乾燥試験


第4図 マイクロ波・熱風併用乾燥特性

研究の成果

マイクロ波・熱風併用乾燥試験で得られたデータを用 いて、マイクロ波と熱風の最適な組み合わせおよび設備 諸元について検討した。

一例として、既存の熱風乾燥機(熱風温度90℃、乾燥 時間180分)による処理量(60kg/h)を2倍(120kg/h)に 拡大する事例を紹介する。

先に述べたとおり、水分率の高い生地(柔らかい)をマ イクロ波乾燥すると、変形が生じる可能性がある。また 多くの水分を蒸発させるためにマイクロ波出力を大き くする必要があり、設備コスト、消費電力が大きくなる。 そこで、乾燥前半は既存の熱風乾燥機にて水分率25% 程度まで乾燥し、後半をマイクロ波・熱風併用乾燥にて 目標水分率まで乾燥するシステムを考案した(第5図)。

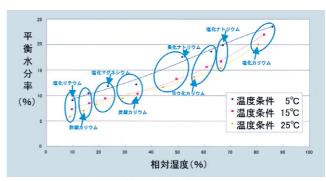
第5図 熱風とマイクロ波・熱風併用乾燥の組合せ乾燥

具体的には、既存の熱風乾燥機のコンベア速度を上 げ、従来180分かけて乾燥している時間を半分の90分と して処理量を2倍にするとともに、生地がある程度堅く なって変形のリスクが小さくなる水分率25%まで乾燥 する。これをマイクロドラムと呼ばれるバッチ式のマイ クロ波・熱風併用乾燥機2台で60分かけて目標水分率ま で乾燥する。この方法では、マイクロ波・熱風併用乾燥 機の出力およびサイズを比較的小さくでき、設備コスト を低減することができる。

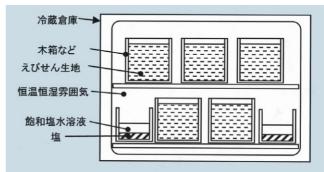
消費エネルギー、設備コストおよびランニングコスト を比較すると、第1表のとおりとなり、単純に熱風乾燥 機を1台増設した場合と比較していずれも大幅な低減を 見込むことができる。

第1表 乾燥エネルギーおよびコストの比較

				熱風単独(従来方式)	熱風とマイクロ波·熱風 併用の組合せ
追	加	設	備	熱風乾燥機1台	マイクロドラム2台
乾	燥	時	間	180分	150分
一次エネルギー換算 消費エネルギー比				100%	65.5%
設 備 コ ス ト (追加コスト)				8,000万円	2,000万円 (1,000万円×2台)
ランニングコスト				260万円/月	160万円/月


試算条件:稼働時間は240時間/月とする。

-次エネルギー換算値:電力1kWhにつき9.76MJ、都市ガス1Nm3につき46.05MJ


その他(生地寝かし工程の改善)

生地乾燥後の寝かし工程では、従来温度管理しか行っ ておらず、生地ごとに水分率のばらつきが生じて膨化焼 成時の膨らみ具合に差が生じ、製品品質がバラつくとい う問題もあった。これについては、生地の寝かし場所に 塩化ナトリウム等の飽和塩水溶液(塩類およびその飽和 水溶液)を置いて湿度を制御し、生地の水分率を一定の 値に調整する手法で解決可能である(第6図)。

飽和塩水溶液による温湿 第6図

例えば、原材料保管用の定温倉庫に塩類容器を設置す れば、簡易で安価な調湿保管庫とすることができる(第7 図)。

調湿保管庫のイメージ

今後の予定

法人営業部と連携し、本研究成果を基にした生地乾燥 手法および寝かし手法について、えびせんべいを製造す るお客さまに向けた提案を行っていきたい。

