In order to strengthen our ability to ensure wide-area interconnection, we started operating the 900-MW Hida Converter Station in March 2021. The station connects a 50Hz area (eastern Japan) and 60Hz area (western Japan), thereby increasing the interchangeable power capacity between the two areas to a total of 2,100 MW. We also plan to increase the capacity further to 3,000 MW in the future.

We will offer aggregate services that provide diverse value to customers, including a reduction of their energy costs. These services use communication technology to “aggregate” information on distributed power sources, which include power sources, storage batteries, EVs and solar power generation equipment to be connected, as well as information on electricity demand, and adjust the volume of the electricity flow by regulating electricity usage and instructing charging to or discharging from storage batteries.

As an effort to improve resilience, we will consider building an emergency microgrid that can operate in a self-sustained manner even when power distribution lines are disconnected from the demand area distribution system during an extraordinary disaster, by utilizing distributed power sources, such as local storage batteries, solar power generation equipment and electric vehicles (EV).

In order to strengthen our ability to ensure wide-area interconnection, we started operating the 900-MW Hida Converter Station in March 2021. The station connects a 50Hz area (eastern Japan) and 60Hz area (western Japan), thereby increasing the interchangeable power capacity between the two areas to a total of 2,100 MW. We also plan to increase the capacity further to 3,000 MW in the future.

We will offer aggregate services that provide diverse value to customers, including a reduction of their energy costs. These services use communication technology to “aggregate” information on distributed power sources, which include power sources, storage batteries, EVs and solar power generation equipment to be connected, as well as information on electricity demand, and adjust the volume of the electricity flow by regulating electricity usage and instructing charging to or discharging from storage batteries.

As an effort to improve resilience, we will consider building an emergency microgrid that can operate in a self-sustained manner even when power distribution lines are disconnected from the demand area distribution system during an extraordinary disaster, by utilizing distributed power sources, such as local storage batteries, solar power generation equipment and electric vehicles (EV).