設定登録を受けた特許等(平成16年7月~平成16年8月)の紹介

以下に掲載いたしました特許に関するお問い合わせ等は、研究企画部知的財産グループにお願いします。

種別	登録番号	登録年月日	発明等の名称	当社発明者		共有権利者	当社技術主管部署
特許	03571136	2004/7/2	電線の溶融接続に用いる冶 具および該治具を用いた電 線の溶融接続方法	真鍋 中村	佳久 佳津宏	旭電機(株)	工務部 技術開発グループ
特許	03572003	2004/7/2	色素レーザ装置			レーザ濃縮技術研究組合 (株)東芝	原子力部 サイクル企画グループ
特許	03574905	2004/7/16	石炭灰固化物の利用方法	近藤 柳瀬 三浦 尾関	寛通 辰彦 雅彦 正典	大成建設(株) (株)コムリス	電力技術研究所 土木建築グループ 構築チーム
特許	03576246	2004/7/16	燃料電池の運転操作方法	江崎 服部	義美 雅俊	三菱重工業(株)	電力技術研究所 エネルギーエンジニアリンググループ 燃料電池チーム
特許	03576327	2004/7/16	排ガスの低温脱硝方法	鳥屋尾 三輪	守勝	三菱重工業(株)	エネルギー応用研究所 環境技術グループ 化学チーム
特許	03576501	2004/7/16	廃棄物ガス化ガスのエネル ギー回収方法および装置	上柳田 中西 飯尾	I 正 顕宏 光宏	川崎重工業(株)	電力技術研究所 エネルギーエンジニアリンググループ 燃料電池チーム
特許	03578973	2004/7/23	蓄熱槽	杉山 岩田 岩田	武 宜巳 美成		電力技術研究所 土木建築グループ 構築チーム
特許	03580651	2004/7/30	延線用ガイド片	川北	章宗	三和テッキ(株) (株)トーエネック (株)シーテック 川北電気工業(株) (株)ピメノ 東光電気工事(株) 名東電気工事(株) (株)メイワイーシー	工務部 技術開発グループ
特許	03583647	2004/8/6	交流連系装置及びその制御 方法	藤田	秀紀	(株)日立製作所	電力技術研究所 電力ネットワークグループ 系統チーム
特許	03585719	2004/8/13	酸化物超電導ケーブルユニットおよびそれを備えた超 電導ケーブル	長屋	重夫	(株)フジクラ	電力技術研究所 電力ネットワークグループ 超電導・新素材チーム
特許	03586789	2004/8/20	二酸化炭素排出削減量の計 測方法	岩尾	憲三		エネルギー応用研究所 バイオ技術グループ 陸域生物チーム

News at Home and Abroad 内外ニュース

電力技術研究会シリーズ

系統運用専門部会は、昭和34年の電力技術研究会発 足当時から続く歴史の長い専門部会の1つであり、そ の開催回数は115回に上ります。本部会は、系統運用 部系統技術グループの竹内主査をはじめ、社外委員7 名(大学関係6名、関係会社1名) 当社委員9名で構成 されています。ここでは、「安定供給・信頼度確保」と いう系統運用の永年の命題は勿論、近年は電力自由化

に係る課題解 決に向けた技 術検討・情報交 換が行われて います。

平成16年12 月2日に開催さ れた系統運用 専門部会では、

系統運用専門部会

「価格競争力強化のための技術開発」および「電力安定 供給・新エネルギー供給に関する技術開発」をキーワ ードとして意見交換が行われました。この中で、社外 委員からは電力系統領域のフェーザを用いた計測方式 として期待される「電力系統のユビキタスコンピュー ティング」に関する研究について報告されました。ま た社内委員からは電力自由化の進展により重要性が増 す最適潮流計算の適用を目指す「過渡安定度制約付き OPFを用いたTTCの算出」についての研究をはじめ4

件が報告され、熱心な討議 が繰り広げられました。 また、あわせて当社中央給 電指令所の見学会も実施 し、当社の需給制御や需給 運用を紹介し、有益な時間 となりました。

