深部洞道の蓄冷効果に関する研究

低コストな洞道冷却手法の検討

The Research on the Effect of Cooling Storage of Deep Tunnels

The Examination of the Low-Cost Tunnel Cooling Technique

(工務技術センター 技術G)

深部洞道において土壌の熱容量を活かした冬季風 冷を行い、実測データより土壌による蓄冷効果とシ ミュレーションによる実測データの再現可能性を検 証した。その結果、実測データより冬季風冷による 通年の冷却効果と、シミュレーションによる実用的 な手法として風冷設計に利用可能という結果を得た。 (Technical Section, Engineering Technology Center)

We tried to utilize the thermal capacity of the soil by cooling a deep tunnel by the air in winter, and verified the effect of the cooling storage and the reproducibility by the simulation of measured data. As a result, we got a result of the cooling effect around a year by the air in winter and of the availability of wind-cooling plan for the cooling technique by the simulation.

研究の背景と目的

地下深くの洞道内に布設されている超高圧地中ケーブ ルの発熱は、周囲土壌に放熱されるが、土壌自体は蓄熱 効果を有しているため、時間をかけて洞道内温度が上昇 していく。一方でこうした洞道は、周囲土壌の熱容量も 大きく、一度冷えると再び暖まるまでに時間がかかる特 性がある。そこで、冬季外気を洞道内に導入し土壌を蓄 冷すれば、風冷により通年の冷却効果が期待できる点に 着目した。

2.1 洞道内・土壌内温度の測定

当社の超高圧地中送電線の中で、最も高稼働なケーブ ルが布設されている洞道を選定し、第1、2図のとおり 温度センサを設置して、温度測定を実施した。

第2図 洞道断面方向の測定位置

2.2 冬季風冷実施による蓄冷効果の確認

(1)冬季風冷実施期間の検討

風冷を行う前に、冬季風冷実施期間を検討した。

まず、外気の導入温度は、周囲土壌に対し十分蓄冷効 果が得られるよう洞道周囲の土壌温度(=基底温度)以 下で風冷を実施することとし、運開前の洞道内実測温度 18 とした。また、18 以下となる期間は、当該地区 の月平均外気温(アメダスデータ)の調査結果より11~ 4月とした。

(2)長手方向洞道内温度データによる蓄冷効果確認 第3図の実測データより、風冷前~風冷中・風冷後の 温度変化より蓄冷効果を確認した。

第3図 洞道内長手方向の温度分布図

風冷前:中央部で33 と高く、外気との自然対流に より、両端の温度は比較的低い。

風冷終了時:吸気側温度は大きく低下したが、導入外 気はケーブル熱を奪いながら通過するため徐々に加熱 されることから排気側では温度が上昇した。また、風 速測定結果より、当現場の風速は0.3m/sであった。 風冷終了~5ヶ月後:風冷停止と外気温の上昇に伴い

温度上昇した。(排気端35) 風冷終了~6ヶ月後:気温が低下したことから排気端 からまめ気が流入し合体的に温度低下した。(景高

からも外気が流入し全体的に温度低下した。(最高 30) 以上より、吸気口~700m付近までは風冷による蓄冷

効果を確認し、逆に遠端では夏9月末まで温度上昇を確 認した。以下700m地点の測定結果について述べる。

(3)700m地点の温度推移

洞道中央付近700mでの風冷を行った洞道内温度実測 値と風冷なしの計算値とを比較し、蓄冷効果を確認し た。結果を第4図に示す。なお、風冷なしの計算値は、 後述2.2(5)の方法による。

- :風冷中は温度が低下し、4月末の停止時には、
 風冷なし計算値に比べ8 低下。(風冷効果)
- :風冷停止後、発熱が排熱を上回るため、徐々
 に温度は上昇する。
- :風冷停止後6ヶ月は、風冷なし時に比べ3の

 蓄冷効果を確認した。

第4図 700m(no.3)地点の洞道内温度

(4)700m地点の熱収支

熱等価回路による熱収支と実測データから算出した熱 収支が一致するかを見積もった。風冷前・風冷停止後は 第5-1図のとおりケーブル全熱が土壌へ放出され土壌へ の蓄熱量が増加するため洞道内温度が上昇する。一方、 風冷中は、JCS第168号の計算式より、風冷による冷却 量を算出し、第6-1図のとおり、ケーブル残熱が土壌に 放熱されるが温度差により外部へ放散する熱量の方が多 いことから周囲土壌の蓄熱量が減少すると考えた。

第5-1図 風冷停止後(非風冷時)の熱収支予測

第5-2図 風冷停止後(非風冷時)熱収支実測結果

第6-1図 風冷時の熱収支予測

第6-2図 風冷時の熱収支予測図

第5~6図より理論と実測が一致することから、風冷 により年間を通した蓄冷効果が得られる程の熱容量を有 し、かつ熱等価回路による熱シミュレーション可能な目 途を得た。

(5)シミュレーションの精度確認

(4)の熱等価回路の土壌熱抵抗・熱容量パラメータ を細分化した差分法によるシミュレーションモデルに、 実績負荷電流を入力し過去の洞道内温度実測値に合うよ う再現を試みた。

当シミュレーションの再現結果は、第7図のとおり十 分な精度で解析可能であることを確認した。

第7図 700m地点の洞道内温度再現計算結果

深部洞道にて、風冷により年間を通した蓄冷効果が得 られる程の熱容量が確認できた。また、シミュレーショ ンによる温度推移の再現に成功し実用的な冷却手法とし て設計に利用できる目処を得た。

