配電設備の点検支援機器の開発

設備点検の効率化、作業環境の改善を目指して

Development of Distribution Facilities for Inspection Support Equipment

For the Streamlining of Facility Inspections and Improvement of the Work Environment

(配電部 技術G)

配電設備の点検は、地上からの目視点検、昇柱およ び高所作業車を使用しての細部目視点検等があり、 各々点検対象により使い分けしている。配電設備の細 部点検を地上から実施することができれば、昇柱およ び高所作業車を使用した場合と比較し、効率化、作業 環境改善が図られることから点検支援機器を三菱重工 業(株)と共同開発した。

(Technology Group, Distribution Department)

Inspections of distribution facilities include a visual inspection at ground level and a detailed visual inspection using a pole climber or elevating work platform, etc., and these are used in accordance with the inspection target. If a detailed inspection of distribution facilities can be conducted from the ground, it will streamline inspections and improve the work environment, in comparison to cases in which a pole climber and an elevating work platform are used; therefore, we have developed inspection support equipment in collaboration with Mitsubishi Heavy Industries, Ltd.

開発の背景

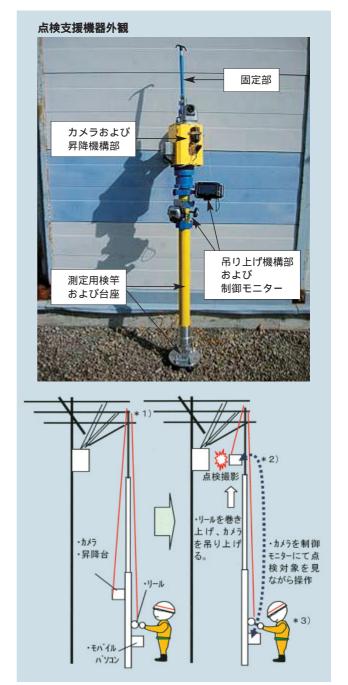
地上から配電設備を点検するための支援機器は、一般 的に伸縮操作棒を活用するものが市販されている。これ らのものは、棒の先端に点検対象を撮影するカメラ等 (重量物)が設置されているため、伸縮操作棒を伸ばし て高所(地上14m程度)の点検を実施する際に、伸縮操 作棒自体のしなりが発生する等の課題があり、現場活用 されていない。そこで、配電設備の細部点検を地上から 効率よく実施することを目的とした点検支援機器を開発 した。

開発の概要

(1) 点検支援機器の概要

点検支援機器は、 カメラおよび昇降機構部、 固定 部、 吊り上げ機構部および制御モニター、 測定用検 竿および台座から構成される。

肉体的負荷軽減の観点からは、伸縮操作棒の自動昇降 機構が最適であるが、可搬可能な重量の点で実現は困難 であるため、市販の測定用検竿を用いた。


具体的な点検手順について以下に示す(第1図)。

- ア 測定用検竿を伸ばし、固定部を高圧電線または腕金 に固定する。*1
- イ 吊り上げ機構部(リール)でカメラおよび昇降機構部 を固定部付近まで吊り上げる。*2(5kg程度の重量 物まで吊り上げ可能)
- ウ 制御モニターにてカメラを操作し、点検対象を拡大 し、点検する。*3(撮影画像の保存も可能)
- (2) 点検支援機器の仕様

カメラおよび昇降機構部

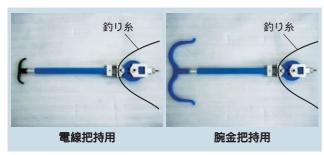
昇降機構部は、カメラ、無線機器、電源等で一体化さ れ、測定用検竿に沿って昇降する。

昇降は、使用する測定用検竿の最大径から最小径まで

第1図 点検支援機器を用いた点検方法

スムースに移動できる。また、吊り上げ用の釣り糸が切 れた場合には、昇降機構部が落下しないように非常停止 機構を設けた。

カメラは、デジタルカメラとネットワークカメラを比 較検討した結果、撮影部が左右上下に遠隔操作が可能な ネットワークカメラを採用した(第2図)。


第2図 カメラおよび昇降機構部

固定部

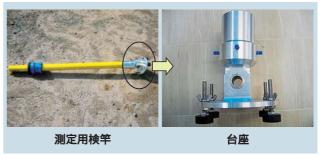
固定部は、測定用検竿の固定部品とカメラ吊り上げ用 の釣り糸を通す滑車(ガイドローラ)により構成する。

滑車上部は、釣り糸がローラから外れないロック構造 にするとともに、釣り糸の交換時等においては容易に取 付けおよび取外しが可能な構造とした。

固定部品は、電線把持用と腕金把持用の2種類とした (第3図)。

第3図 固定部

吊り上げ機構部および制御モニター


吊り上げ機構部、制御モニターは、市販の電動リー ル、モバイルパソコンを使用し、電動リールで点検対象 物の付近までカメラおよび昇降機構部を移動させた後、 モニター上にて点検対象を画像として確認することがで き、制御モニターをペンタッチすることでカメラを無線 制御することができる。制御モニターは、取り外しが可 能で、ネットワークカメラから70m離れた箇所において も通信可能(室内においても通信可能)第4図)。

測定用検竿および台座

測定用検竿は、全長15mの市販品を使用し、台座は、 測定用検竿自体を回転可能な機構とし、傾斜地でも水平 に設置できるように高さ調節機構を設けた(第5図)。

第4図 吊り上げ機構部および制御モニター

第5図 測定用検竿および台座

(3)検証

この点検支援機器は、5kg程度の重量物を上部へ吊り 上げしても伸縮操作棒のしなりが発生しなかった。

点検支援機器を使用し、地上14mの耐雷ホーンを点検 した結果、モニターにて表面状態の細部まで確認でき た。また、銘板の記載事項のような細かい内容まで確認 することができた。

以上のことから、点検支援機器を用いることにより、 地上から配電設備の細部点検が可能となった(第6図)。

第6図 耐雷ホーンの点検結果

開発成果

配電設備の細部点検の効率化、作業改善を目的とした 点検支援機器を開発することができた。

