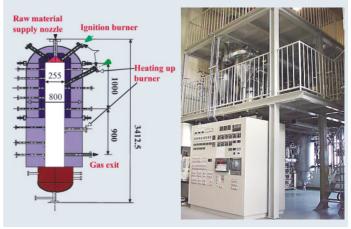
木質系バイオマスのエネルギー転換・改質

名古屋大学 大学院 工学研究科 准教授

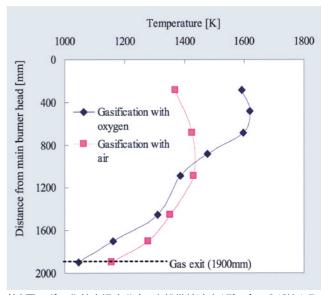
Associate Professor Yoshinori Itava Department of Chemical Engineering Nagoya University



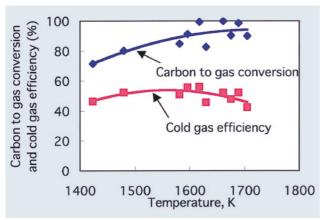
はじめに

地球環境問題に加えて最近の原油価格高騰に伴い、エ ネルギー資源の多様化および再生可能エネルギーのニー ズが高まってきている。なかでもバイオマスはカーボン ニュートラル燃料として注目を集めており、種々の利用 技術開発が推進されている。しかし、バイオマスの賦存 量の大きさは指摘されつつも、回収コストの観点から集 中的な大規模処理設備の導入が困難とされており、地域 分散型の小規模利用技術の開発が要求される。また、バ イオマスの高度エネルギー利用を図るためには、ガス化 や液化などのような高効率エネルギー転換・改質技術の 確立も期待されている。著者らはこれまでに木質系バイ オマスを対象として地域分散型の高効率ガス化および熱 水処理による液化・燃料改質に関する研究を実施してお り、本稿ではその概要を紹介する。

木質バイオマスの気流層高温ガス化


これまでの木質バイオマスのガス化は、キルン方式や 流動層方式のような低温ガス化がほとんどであるが、大 量のタール生成を伴い、タール分の分解が大きな課題と なっている。これに対して、著者らは1000 以上の気 流層高温ガス化方式を採用し、タールフリーでガス化し 生成される燃料ガスを高温型の燃料電池(MCFCまたは SOFC)で高効率発電するシステムを提案した。このよ うなシステムを構築するための要素研究として、第1図 に示すようなラボスケールのダウンフローガス化試験装 置を用いた高温ガス化基礎試験を行った。原料には木質 バイオマスを粉砕した平均粒径100 µ mの木粉を用いた。 第1表に木粉の分析値を示す。ガス化剤に酸素および空 気を用いたときのガス化炉内高さ方向の温度分布の一例 を第2図に示す。ガス化温度はガス化剤に空気と酸素の いずれを用いた場合にも1400K以上となり、酸素では 1600Kに達している。ただし、本試験では装置サイズに 比較して処理量が少ないため、メタンを1.8m³N/hで供

第1図 ダウンフローガス化試験装置概略図

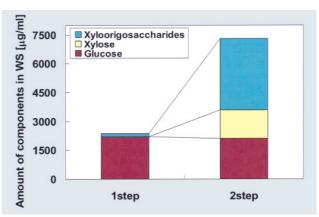

第1表 木粉の分析値

工業分析 [wt%]		元素分析 [wt%]	
水 分	10.61	炭素	48.40
揮 発 分	82.12	水 素	6.40
固定炭素	17.10	室 素	0.12
灰 分	0.78	酸 素	44.11
低発熱量	18.2 MJ/kg		

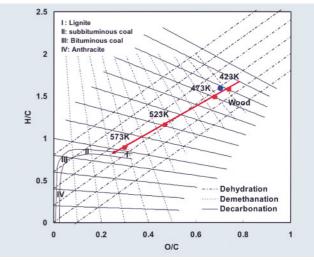
第2図 ガス化炉内温度分布(木粉供給速度17kg/h、O/C比1.7)

給して助燃を行っており、小規模の処理ではこのような 助燃方式の有効性を示した。第3図はO/C比を変えた場 合のガス化最高温度に対する炭素ガス化率と冷ガス効率 を示したもので、約1600Kのガス化温度で冷ガス効率が 最大となり、ガス化炉内バイオマス滞留時間が数秒程度 でも、炭素ガス化率が90%以上を達成している。この ようなガス化で合成されるガス組成は水素、一酸化炭 素、二酸化炭素が主成分となり、MCFCのような燃料電 池の燃料として改質機能を有するガス化技術であること が示された。またガス組成は、水性シフト反応(CO+ H2+CO2)の平衡関係でほぼ推算できることを H₂O 確認している。

第3図 ガス化温度と炭素ガス化率および冷ガス効率の関係(酸化剤:酸素)


木質バイオマスの加圧熱水処理

木質バイオマス液化技術の中でも、エタノール製造が 注目を集めている。このようなエタノール製造では、木 質バイオマス中のリグニンが酵素糖化の大きな阻害要因 となっており、セルロースやヘミセルロースを高い効率 で糖化させる技術開発が大きな課題となっている。著者 らは、加圧熱水を利用してセルロースやヘミセルロース の直接加水分解または酵素糖化の前処理効果の可能性に ついて検討を行った。原料には100μm以下の微細木粉 を用い、オートクレーブで種々の条件で加圧熱水処理す ることにより、473K程度でヘミセルロースからキシロ ース類の生成、523K程度ではセルロースからグルコー ス生成を確認した。しかし、反応時間の経過に伴い生成 した糖類がさらに酸へ過分解が進行してしまうため、糖 類への転換率を向上させることが困難となる。そこで、 第2表のように、473Kで処理して抽出液と木粉を分離 後、523kで熱水処理する2段階方式にしたところ、第4


第2表 2段階熱水処理試験操作条件

	反応温度	反応時間	加熱速度
1段階	473 K	12 min	110 K/min
2段階	523 K	5 min	110 K/min

図に示すように523Kで1段階処理した場合と比べて、 高い収率の糖類が得られた。しかし、トータル的な液化 収率や熱水処理後の残渣の酵素糖化効率を確認した限り では、まだ十分な効果が得られておらず、現在さらに多 角的な検討を行っている。なお、木粉の熱水処理固形残 渣分を分析したところ、第5図に示すように、コールバ ンド上で木質バイオマスが褐炭に近い性状となることを 明らかにした。このことから短時間の熱水処理で、灰分 が少なく硫黄や窒素分をほとんど含まない新たな高品質 固体燃料へ改質できることを示した。

第4図 2段階熱水液化処理試験による抽出液の糖濃度(木粉:ケヤキ)

第5図 木粉の熱水処理による固形残渣の燃料改質効果

あとがき

木質バイオマスのエネルギー転換および改質技術とし て、高温ガス化および加圧熱水処理技術に関する研究成 果の一部を紹介した。本稿が環境調和型エネルギー技術 の考え方として少しでも参考になれば幸いである。

板谷 義紀(いたや よしのり)氏 略歴

1985年3月 名古屋大学大学院工学研究科博士課程満了

1985年4月 名古屋大学工学部助手

1989月7月~1990年8月 米国Rutgers大学研究員

1997年4月 名古屋大学大学院工学研究科助教授